BendBright[™] A1 200 µm Single-Mode Optical Fiber - North America

Prysmian

Overview

BendBright[™] A1 200 µm fiber encompasses all the features of ESMF Optical Fiber (Enhanced Single-Mode Fiber) and provides high resistance to macro-bend losses, particularly in the 1600 nm wavelength region.

With a smaller 200 µm coating diameter, BendBright[™] A1 200 allows cable designers to drastically reduce cable diameters for most OSP cable designs. This feature not only increases fiber density in ducts, it reduces the size & weight of aerial cables and allows designers to increase fiber density in microduct and FlexRibbon designs.

BendBright A1 200 µm fiber is further enhanced with Prysmian's proprietary ColorLock™ coating. This coating enables optimum fiber performance, reliability and durability, even in harsh environments.

BendBright A1 200 µm fiber complies with or exceeds the ITU-T Recommendation G.652.D and G.657.A1, the IEC International Standard 60793-2-50 type B-652.D and B-657. A1 Optical Fiber Specification, Telcordia GR-20-CORE, ANSI/ ICEA S-87-640 and RUS 7CFR 1755.900.

Features and Benefits

Reduced Coating Diameter

- Reduction in cable diameter.
- Increased fiber counts in 1, 11/4, and 2" conduits.
- Increase fiber counts in microduct applications.
- Allows higher fiber counts in smaller microducts.
- Reduction in fiber management systems footprint.

Same glass and diameter (125 $\mu m)$ as standard BendBright A1

- Compatible with standard cleaving and stripping tools.
- Can be single fiber spliced with similiar fusion splice program settings as BendBright or other G.657.A1 or G652.D fibers.

Low Bending Losses

- Up to 1/10th the bending loss of standard single mode fiber provides improved system performance.
- Low bending loss at 15 mm bend radius; 10 turn loss \leq 0.25 dB at 1550 nm
- Specified down to a 10 mm bend radius; 1 turn loss ≤ 0.75 dB at 1550 nm
- Allows a smaller bend radius with small diameter cables such as patch cords and distribution cables.
- Improperly installed small diameter bends result in lower attenuation impacts on systems.
- Allow the use of smaller splice trays or closures.
- Provides lower bending losses at higher wavelengths such as 1625 nm which future proofs the network.
- Improves temperature cycling and mid-span express tube routing loss performance providing long-term attenuation stability.

Lower PMD of 0.06 ps/√km Link Design Value

- Extends the PMD distance performance, reducing regeneration costs.

Improved Geometrical Parameters

- Low splice loss and high splice yield.

Proprietary APVD™ Manufacturing Process

- Superior geometry, uniformity and purity.

Revolutionary ColorLock[™] Coating Process

Increased reliability, durability, and superior aging performance, resulting in lower maintenance and replacement costs. Makes color a component of the coating, thus enhancing fiber identification and colored fiber reliability. Consistent, vibrant color for ease-of-use and flexibility.

Prysmian

Prysmian Group 4 Tesseneer Drive, Highland Heights, KY 41076 +1-859-572-8000 / na.prysmiangroup.com TLS-DS-F-008-1021

A Brand of Prysmian Group

BendBright[™] A1 200 µm Single-Mode Optical Fiber - North America

Prysmian

Performance Specifications

Maximum Attenuation	(dB/km)*
@ 1310 nm	0.34
@ 1383 nm **	0.31-0.34
@1490 nm	0.24
@ 1550 nm	0.20
@ 1625 nm	0.23

* Other values on request.

** Including H2-aging according to IEC 60793-2-50, type B.1.3.

Attenuation vs. Wavelength	
1285 nm to 1330 nm	= α ₁₃₁₀ ≤ 0.03 dB/km
1525 nm to 1575 nm	= α ₁₅₅₀ ≤ 0.02 dB/km

Point Discontinuities

No point discontinuity greater than 0.05 dB at 1310 nm and 1550 nm

Attenuation with Bending			
Mandrel Radius (mm)	Number of Turns	Wavelength (nm)	Attenuation (dB)
10	1	1550	≤ 0.75
10	1	1625	≤1.5
15	10	1550	≤ 0.25
15	10	1625	≤1.0

Cutoff Wavelength	
Cable Cutoff Wavelength (λ ccf)	≤ 1260 nm
Mode Field Diameter	
1310 nm	9.2 ± 0.4 µm

Chromatic Dispersion	
1550 nm	10.4 ± 0.5 µm
1310 hm	9.2±0.4µm

1285-1330 nm	≤ 3 ps/(nm*km)
1550 nm	≤18.0 ps/(nm*km)
1625 nm	≤ 22.0 ps/(nm*km)
Zero Dispersion Wavelength (λ_0)	1304-1324 nm
Slope (So) at λο	≤ 0.092 ps/(nm²*km)

Polarization Mode Dispersion (PMD)		
PMD Link Design Value**	≤ 0.06 ps/√km	
Max. Individual Fiber	≤ 0.1 ps/√km	

** According to IEC 60794-3, Ed 3 (Q=0.01%)

Geometrical Specifications		
Glass Geometry		
Core/Cladding Concentricity Error	≤ 0.5 µm	
Cladding Diameter	125.0 ± 0.7 µm	
Cladding Non-Circularity	≤ 0.7%	
Fiber Curl	≥ 4.0 m radius	
Coating Geometry		
Coating/Cladding Concentricity Error	≤ 10 µm	
Coating Diameter	200 ± 10 µm	
Coating Non-Circularity	≤6%	
Lengths	Up to 50.4 km	

Mechanical Performance		
Minimum Proof Test	100 Kpsi (0.7 GPa); 1% strain equivalent	
Tensile Strength	Median > 3.8 GPa (550 kpsi)	
Dynamic Fatigue	Dynamic: Unaged & Aged*** n _d >20	
Coating Performance Unaged & Aged***	Average Strip Force: 1 N to 3 N Peak Strip Force: 1.2 N to 8.9 N	

***Aging: 0°C and 45°C, 30 days at 85°C and 85% RH, 30 days water immersion at 23°C, Wasp spray exposure (Telcordia)

Environmental Performance

Environmental Test	Induced Attenuation at 1310, 1550 nm (dB/km)
Temperature Cycling (-60°C to +85°C)	≤ 0.05
Temperature Humidity Cycling (-10°C to +85°C, up to 98% RH)	≤ 0.05
Water Immersion (23°C ± 2°C)	≤ 0.05
Dry Heat (30 days, 85°C ± 2°C)	≤ 0.05
Damp Heat (30 days, 85°C, 85% RH)	≤ 0.05

Typical Specifications	
Effective Group Index	@ 1310 nm 1.467 @ 1550 nm 1.468 @ 1625 nm 1.468
Rayleigh Backscatter Coefficient (1 ns = pulse width)	@ 1310 nm: -79.4 dB @ 1550 nm: -81.7 dB @ 1625 nm: -82.5 dB

Prysmian Group

4 Tesseneer Drive, Highland Heights, KY 41076 +1-859-572-8000 / na.prysmiangroup.com TLS-DS-F-008-1021

Prysmian

A Brand of Prysmian Group